Catalytic Enantioselective Synthesis of N-C Axially Chiral Phenanthridin-6-one Derivatives

Tomoaki Hirata, ${ }^{\dagger}$ Isao Takahashi, ${ }^{\dagger}$ Yuya Suzuki, ${ }^{\dagger}$ Hiroaki Yoshida, ${ }^{\dagger}$ Hiroshi Hasegawa, ${ }^{\dagger}$ and Osamu Kitagawa*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
${ }^{\ddagger}$ School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan

(5) Supporting Information

Abstract

N-C axially chiral phenanthridin-6-one derivatives bearing various ortho-substituted phenyl groups on the nitrogen atom were enantioselectively prepared through (R)-DTBM-SEGPHOS-Pd $(\mathrm{OAc})_{2^{-}}$ catalyzed intramolecular Buchwald-Hartwig amination. The enantioselectivity strongly depended on solvents, bases, and reaction temperature as well as on the bulkiness of ortho-substituents. achiral axially chiral (up to 77% ee)

Recently, catalytic enantioselective syntheses of N-C axially chiral compounds have received considerable attention. Various N-C axially chiral compounds have been prepared with high enantioselectivity through an original catalytic asymmetric reaction developed for an each group. ${ }^{1,2}$ These N-C axially chiral compounds usually have ortho-tert-butyl- or 2,6disubstituted anilide skeletons, ${ }^{1,2}$ while catalytic enantioselective synthesis of anilide derivatives bearing an orthomonosubstituent except for a tert-butyl group is far less common. ${ }^{3}$

We succeeded in the highly enantioselective synthesis of N -(2-tert-butylphenyl)-3,4-dihydroquinolin-2-one derivative IIa through chiral palladium-catalyzed intramolecular BuchwaldHartwig amination of NH -anilides $\mathbf{I}, \mathbf{,} \mathbf{b}$ (Scheme 1). ${ }^{1 \mathbf{a}}$ This

Scheme 1. Catalytic Enantioselective Synthesis of N-C Axially Chiral 3,4-Dihydroquinolin-2-one Derivatives II

I "achiral" la ($\mathrm{R}=t$ - $\mathrm{Bu}, \mathrm{X}=\mathrm{I}$) lb ($\mathrm{R}=t-\mathrm{Bu}, \mathrm{X}=\mathrm{Br}$) Ic ($\mathrm{R}=i-\mathrm{Pr}, \mathrm{X}=\mathrm{Br}$)

II "axially chiral" Ila (95\%, 93\% ee) Ila ($66 \%, 89 \%$ ee) IIc (97%, racemic)
(R)-SEGPHOS
reaction is the first practical catalytic asymmetric synthesis of $\mathrm{N}-\mathrm{C}$ axially chiral compounds. When this reaction was applied to ortho-iso-propyl derivative Ic, the product IIc was obtained in racemic form. ${ }^{4}$ Since the rotational barrier around a chiral axis in IIc is approximately $25 \mathrm{kcal} / \mathrm{mol}$ (the rotational barrier of IIa $=32.0 \mathrm{kcal} / \mathrm{mol}$), the racemization of IIc should easily occur
under the present conditions $\left(80^{\circ} \mathrm{C}, 20 \mathrm{~h}\right)$. Thus, the reaction of Scheme 1 would be difficult to apply to the synthesis of N -aryl-3,4-dihydroquinolin-2-one derivatives II bearing orthomonosubstituents except for a tert-butyl group.

On the other hand, it has been reported that phenanthridin6 -one derivatives 2 (Scheme 2) maintain a stable axially chiral structure even in substrates bearing a small ortho-substituent such as a methyl group ($\mathrm{R}=\mathrm{Me}, \Delta G^{\ddagger}=28.5 \mathrm{kcal} / \mathrm{mol}$); ${ }^{5,6}$ however, their enantioselective synthesis has not yet been achieved. We expected that catalytic enantioselective synthesis of phenanthridin-6-one derivatives bearing various orthosubstituted phenyl groups could be achieved by applying the

Scheme 2. Synthesis of Biphenyl Amide Substrates 1 and Attempted Catalytic Asymmetric Synthesis of N-C Axially Chiral Phenanthridin-6-one Derivatives 2

1 "achiral"

2 "axially chiral"
2a (90%, 6% ee)
1a ($\mathrm{R}=i-\mathrm{Pr}$)
2b ($98 \%, 11 \%$ ee)

[^0]Table 1. Screening of Chiral Ligands, Solvents, and Bases in the Reaction of 1a

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |

reaction of Scheme 1 to biphenyl amide substrates $1 .^{7}$ In this paper, we report catalytic asymmetric synthesis of $\mathrm{N}-\mathrm{C}$ axially chiral phenanthridin-6-one derivatives bearing various orthosubstituted phenyl groups on the nitrogen atom through (R)-DTBM-SEGPHOS-Pd(OAc) 2_{2}-catalyzed intramolecular Buch-wald-Hartwig amination. ${ }^{8}$ The mechanistic consideration of the present reaction and the stereochemical assignment of a chiral axis are also described.
The biphenylamide substrates 1 were easily prepared through the condensation of methyl 2^{\prime}-bromo-($1,1^{\prime}$-biphenyl)-2-carboxylate ${ }^{7,9}$ (commercially available) with ortho-substituted-aniline in the presence of $\mathrm{Me}_{3} \mathrm{Al}$ (Scheme 2). Initially, the reaction of biphenylamide 1a bearing an ortho-iso-propyl group was conducted under the conditions shown in Scheme 1 (Scheme 2). Although the reaction proceeded smoothly to give phenanthridin-6-one 2a in a good yield (90\%), little enantioselectivity was observed (6% ee). Moreover, in the reaction with ortho-tert-butyl derivative $\mathbf{1 b}$, the enantioselectivity was unexpectedly poor ($96 \%, 11 \%$ ee).

Thus, since the reaction with biphenyl amides 1 was found to be very different from the reaction in Scheme 1, we reexamined the screening of chiral ligands, bases, and solvents in the reaction of $\mathbf{1 a}$.

The results are shown in Table 1. As a chiral ligand (entries $1-6)$, the use of (R)-DTBM-SEGPHOS ${ }^{10}$ gave the best result. ${ }^{11}$ In this case, an N-C axially chiral phenanthridinone 2a was obtained in 94% yield and 63% ee (entry 6). With (S,R)PPFA, good reproducibility for both the chemical yield and the enantioselectivity was not obtained (entry 5).

In the presence of (R)-DTBM-SEGPHOS-Pd $(\mathrm{OAc})_{2}$ catalyst, bases and solvents were investigated next. When t-BuOK and NaH were used as the base, the enantioselectivity decreased significantly (17% ee and 31% ee, entries 8 and 9). The use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ gave the best enantioselectivity (75% ee), but a decrease in the chemical yield was also observed (58%, entry 10). To improve the chemical yield, a survey of solvents was conducted. Although the reaction in 1,4-dioxane gave the product 2 a in an excellent yield (96\%), the enantioselectivity was significantly lower (49% ee, entry 11). A relatively good result was obtained when a mixed solvent of toluene and 1,4dioxane was used: in particular, the reaction in toluene:1,4dioxane $=9: 1$ gave the best chemical yield and enantioselectivity ($95 \%, 77 \%$ ee, entry 13). Under the conditions of entry 13, although the other chiral phosphine ligands such as (R, R) CHIRAPHOS and (R)-SYNPHOS were further investigated, good results were not obtained (entry 14: 96\%, 9% ee; entry 15: $62 \%, 36 \%$ ee).

Since a detectable change in the ee for the product 2 a was not observed under the present reaction conditions (for 20 h at

Table 2. Reaction of Substrates Bearing Various ortho-Substituted Phenyl Groups

entry	1	$\mathrm{R}^{1}, \mathrm{R}^{2}$	heating time (h)	2	yield (\%) ${ }^{\text {a }}$	ee (\%) ${ }^{\text {b }}$
1	1a	$\mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H}$	17	2a	95	77
2	1c	$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}$	17	2c	94	70
3	1d	$\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$	9	2d	68	68
4	1 e	$\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$	9	2 e	71-92	25-42
5	1 b	$\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}$	17	2b	26	44
6^{c}	1b	$\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}$	7	2 b	90	69
${ }^{\text {a }}$ Isolated yields. ${ }^{\text {b }}$ The ee was determined by HPLC analysis using a chiral column. ${ }^{c}$ The reaction was performed at $130{ }^{\circ} \mathrm{C}$.						

$80{ }^{\circ} \mathrm{C}$ in toluene), the ee in Table 1 reflects the actual enantioselectivity of the reaction.

Under optimized conditions [7.5 mol \% (R)-DTBMSEGPHOS, $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 2$ equiv of $\mathrm{K}_{3} \mathrm{PO}_{4}$ in toluene-1,4-dioxane ($9: 1$) at $80^{\circ} \mathrm{C}$], the reactions of biphenyl amides $\mathbf{2}$ bearing various ortho-substituted phenyl groups were further examined (Table 2). The reaction of 1 c bearing the naphthyl-1-yl group gave the product 2 c in an excellent yield (94%) and in 70% ee (entry 2). Under the same conditions (for 17 h at $80^{\circ} \mathrm{C}$), the reaction of ortho-ethyl derivative 1 d resulted in a significant decrease in the ee of $\mathbf{2 d}$ ($98 \%, 40 \%$ ee). Meanwhile when the reaction of $\mathbf{1 d}$ was finished in a shorter time (for 9 h at $80^{\circ} \mathrm{C}$), the ee of 2 d increased to 68%, while the chemical yield was lower at 68% (entry 3). This result indicates that partial racemization of the N-(ortho-ethylphenyl)phenanthridinone 2 d occurs under the present reaction conditions. In the reaction of amide $\mathbf{1 e}$ bearing the orthomethyl group, not only was there a further decrease in the ee but also the dispersion of the ee was also observed ($25-42 \%$ ee, entry 4). With substrates bearing a small ortho-substituent, the products 2 with high ee may be difficult to obtain because of the racemization of the product as well as the decrease in the enantioselectivity of the reaction.

On the basis of these results, we expected that the reaction of ortho-tert-butyl substrate $\mathbf{1 b}$ would give the product $\mathbf{2 b}$ with high ee. However, the reaction with $\mathbf{1 b}$ gave $\mathbf{2 b}$ in a poor chemical yield (26%) and lower ee (44% ee) than those of 2 a , $\mathbf{2 c}, \mathbf{2 d}$ (entry 5). Interestingly, when the reaction temperature was increased from 80 to $130^{\circ} \mathrm{C}$ (oil bath), an increase in the enantioselectivity as well as the chemical yield was observed ($90 \%, 69 \%$ ee, entry 6).

These results may be explained as follows (Figure 1). The present reaction proceeds via the pathway shown in Figure 1, and the enantioselectivity may be determined by diastereomeric Pd-amide intermediates $\mathbf{1 C}$ and $1 \mathbf{C}^{\prime}$ formed from 1B by ligand exchange. When the interconversion between 1C and 1C proceeds smoothly and their thermodynamic stability (or the rate of reductive elimination) is very different, the reaction may proceed with high enantioselectivity. In the reaction of $\mathbf{1 b}$ bearing a bulky ortho-tert-butyl group, since the interconversion between 1C and $1 \mathbf{C}^{\prime}$ does not occur efficiently because of the high rotational barrier around the chiral axis, the enantioselectivity may be lower in comparison with those of $\mathbf{1 a}$ and $\mathbf{1 c}$

Figure 1. Possible mechanism for the present reaction.
that bear less bulky iso-propyl and naphthyl-1-yl groups (Table 2 , entry 5).

On the other hand, the increase in the reaction temperature leads to relatively efficient interconversion between 1C and $1 \mathbf{C}^{\prime}$, which leads to an increase in the enantioselectivity (entry 6). As mentioned above, the enantioselectivity was also significantly influenced by which bases and solvents were used (Table 1, entries 6-13). This result may indicate that the interconversion between 1 C and $1 \mathbf{C}^{\prime}$ occurs not only by the rotation about the chiral axis but also by reversible conversion between 1C (or 1C ${ }^{\prime}$) and 1B.

The optical purification and the determination of absolute stereochemistry in axially chiral phenanthridinone derivative 2 were achieved in accordance with Schemes 3 and 4, respectively. 2a (82% ee) and 2b (72% ee) were converted into an almost enantiomerically pure form ($>99 \%$ ee) through self-disproportionation of enantiomers (SDE) by mediumpressure liquid chromatography (MPLC) using an achiral silica gel column (Scheme 3). ${ }^{12}$ That is, the MPLC chart of 2a (82% ee, 42 mg) and $\mathbf{2 b}(72 \%$ ee, 90 mg$)$ gave two distinct peaks and

Scheme 3. Optical Purification through SDE of 2a and 2b Using MPLC

Scheme 4. Regioselective Bromination of $\mathbf{2 b}$ and X-ray Crystal Structure of 3b

looked like the usual chart that is seen for a mixture of two different compounds. The ee of $\mathbf{2 a}$ and $\mathbf{2 b}$ obtained from the less polar fraction was $>99 \%$ ee. ${ }^{13}$

Subsequently, optically pure 2b was treated with NBS in DMF to be converted to mono-bromo derivative $\mathbf{3 b}$ with complete regioselectivity and a high yield (89%, Scheme 4). The X-ray crystal structure of $\mathbf{3 b}$ indicates that the absolute stereochemistry of the major enantiomer in $\mathbf{2 b}$ has an (S)configuration ${ }^{14}$ and bromination of $\mathbf{2 b}$ occurs selectively at the C2-position (Scheme 4). ${ }^{15}$ The absolute stereochemistries of other phenanthridinones $\mathbf{2 a}, \mathbf{c}, \mathbf{d}, \mathbf{e}$, which have large positive $[\alpha]_{\mathrm{D}}$ values as in $\mathbf{2 b}$, also had the (S)-configuration tentatively assigned to them.

In conclusion, we succeeded in the catalytic enantioselective synthesis of N-C axially chiral phenanthridin-6-one derivatives bearing various ortho-substituted phenyl groups on the nitrogen atom through (R)-DTBM-SEGPHOS-Pd $(\mathrm{OAc})_{2}$-catalyzed intramolecular Buchwald-Hartwig amination. The enantioselectivity was found to strongly depend on solvents, bases, and reaction temperature as well as on the bulkiness of orthosubstituents.

EXPERIMENTAL SECTION

Melting points were uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 and 100 MHz spectrometer, respectively. In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts were expressed in δ (ppm) downfield from $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$, respectively. High-resolution mass spectra (HRMS) were obtained using the electron spray ionization technique (ESI) and TOF mass analyzer. Column chromatography was performed on silica gel (75150 mm). Medium-pressure liquid chromatography (MPLC) was performed on a $25 \times 4 \mathrm{~cm}$ i.d. prepacked column (silica gel, $10 \mu \mathrm{~m}$) with a UV detector. High-performance liquid chromatography (HPLC) was performed on a $25 \times 0.4 \mathrm{~cm}$ i.d. chiral column with a UV detector.

2'-Bromo-N-(2-iso-propylphenyl)-[1,1'-biphenyl]-2-carboxamide (1a). Under an Ar atmosphere, to 2 -iso-propylaniline (0.481 g , $3.56 \mathrm{mmol})$ in toluene (10.0 mL) was added a 1.1 M hexane solution of $\mathrm{Me}_{3} \mathrm{Al}(4.9 \mathrm{~mL}, 5.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 10 min at $0{ }^{\circ} \mathrm{C}$, methyl 2^{\prime}-bromo-[1, 1^{\prime}-biphenyl]-2-carboxylate ${ }^{7}$ (commercially available, $1.036 \mathrm{~g}, 3.6 \mathrm{mmol}$) was added to the mixture, and then the reaction mixture was stirred for 16 h at $70^{\circ} \mathrm{C}$. The mixture was poured into $2 \% \mathrm{HCl}$ and extracted with AcOEt. The AcOEt extracts were washed with brine, dried over MgSO_{4}, and evaporated to dryness. Purification of the residue by column chromatography (hexane/AcOEt $=15-5)$ gave 1a ($1.30 \mathrm{~g}, 93 \%$). 1a: white solid; $\mathrm{mp} 87-89^{\circ} \mathrm{C}$; IR (neat) $3275,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.85-7.90(1 \mathrm{H}, \mathrm{m})$, $7.67(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.48-7.56(3 \mathrm{H}, \mathrm{m}), 7.29-7.42(3 \mathrm{H}, \mathrm{m}), 7.23$ $(1 \mathrm{H}, \mathrm{dt}, J=2.0,7.6 \mathrm{~Hz}), 7.17-7.20(1 \mathrm{H}, \mathrm{m}), 7.10-7.15(2 \mathrm{H}, \mathrm{m}), 7.02$ $(1 \mathrm{H}$, brs $), 2.39(1 \mathrm{H}$, sept, $J=6.8 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.03$ $(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 167.2,141.0,140.9,138.2$, 136.0, 133.6, 133.0, 131.2, 131.0, 130.1, 129.7, 128.8, 128.4, 127.7, 126.2, 125.5, 124.7, 123.1, 27.3, 23.4, 23.1; MS (m / z) $416\left(\mathrm{MNa}^{+}\right.$, $\left.{ }^{79} \mathrm{Br}\right), 418\left(\mathrm{MNa}^{+},{ }^{81} \mathrm{Br}\right)$; HRMS. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20}{ }^{79} \mathrm{BrNONa}\left(\mathrm{MNa}^{+}\right)$ 416.06260. Found: 416.06280 . Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}: \mathrm{C}, 67.01$; H, 5.11; N, 3.55. Found: C, 67.04; H, 4.90; N, 3.66.
2'-Bromo-N-(2-tert-butylphenyl)-[1,1'-biphenyl]-2-carboxamide (1b). $\mathbf{1 b}$ was prepared from 2-tert-butylaniline $(0.298 \mathrm{~g}, 2.0$ mmol) in accordance with the procedure described in the preparation of 1a. Purification of the residue by column chromatography (hexane/ $\mathrm{AcOEt}=10)$ gave $\mathbf{1 b}(0.72 \mathrm{~g}, 86 \%)$. $\mathbf{1 b}$: pale yellow liquid; IR (neat) $3291,1667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.82(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.62$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.49-7.55(2 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz})$, $7.38(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.31-7.35(2 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6$ $\mathrm{Hz}), 7.07-7.15(4 \mathrm{H}, \mathrm{m}), 1.27(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 167.3$, $143.8,140.9,138.7,136.2,134.8,132.9,131.3,130.9,130.1,129.7$, 128.5, 128.4, 128.1, 127.5, 126.7, 126.6, 126.4, 123.1, 34.5, 30.6; MS $(m / z) 430\left(\mathrm{MNa}^{+},{ }^{79} \mathrm{Br}\right), 432\left(\mathrm{MNa}^{+},{ }^{81} \mathrm{Br}\right)$; HRMS. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22}{ }^{79} \mathrm{BrNONa}\left(\mathrm{MNa}^{+}\right) 430.07825$. Found: 430.08011.
$\mathbf{2}^{\prime}$-Bromo- N-(naphthalen-1-yl)-[1,1'-biphenyl]-2-carboxamide (1c). 1c was prepared from 1-naphthylamine $(0.73 \mathrm{~g}, 5.11$ mmol) in accordance with the procedure described in the preparation of 1a. Purification of the residue by column chromatography (hexane/ $\mathrm{AcOEt}=5)$ gave $\mathbf{1 c}(1.82 \mathrm{~g}, 90 \%)$. $\mathbf{1 c}$: white solid; $\mathrm{mp} 134-136^{\circ} \mathrm{C}$; IR (neat) $3256,1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.97(1 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.53-7.60(3 \mathrm{H}, \mathrm{m}), 7.31-7.47$ $(6 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 167.2,141.0,138.4,135.8,133.8,133.1,132.1,131.3$, $131.0,130.3,129.8,129.0,128.5,128.5,127.9,127.0,126.0,125.8$, 125.6, 123.2, 120.5, 120.5; MS $(m / z) 424\left(\mathrm{MNa}^{+},{ }^{79} \mathrm{Br}\right), 426\left(\mathrm{MNa}^{+}\right.$, ${ }^{81} \mathrm{Br}$); HRMS. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16}{ }^{79} \mathrm{BrNONa}\left(\mathrm{MNa}^{+}\right)$424.03130. Found: 424.02954. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{BrNO}: \mathrm{C}, 68.67$; $\mathrm{H}, 4.01$; N, 3.48. Found: C, 68.50; H, 3.91; N, 3.73 .

2'-Bromo- N-(2-ethylphenyl)-[1,1'-biphenyl]-2-carboxamide (1d). 1d was prepared from 2-ethylaniline ($0.30 \mathrm{~g}, 2.5 \mathrm{mmol}$) in accordance with the procedure described in the preparation of 1a. Purification of the residue by column chromatography (hexane/AcOEt $=10)$ gave $\mathbf{1 d}(0.89 \mathrm{mg}, 94 \%)$. 1d: white solid; mp $102-104{ }^{\circ} \mathrm{C}$; IR (neat) $3250,1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.88(1 \mathrm{H}, \mathrm{dd}, J=2.8$, $6.4 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.50-7.56$ $(2 \mathrm{H}, \mathrm{m}), 7.29-7.41(3 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{m}), 7.05-7.17(3 \mathrm{H}, \mathrm{m}), 7.03$ $(1 \mathrm{H}, \mathrm{brs}), 2.16(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 166.9,140.9,138.3,135.9,135.3,134.6,133.0,131.2$, 131.0, 130.1, 129.7, 128.8, 128.4, 128.2, 127.8, 126.4, 125.6, 123.6, 123.1, 23.5, 14.0; MS (m / z) $402\left(\mathrm{MNa}^{+},{ }^{79} \mathrm{Br}\right), 404\left(\mathrm{MNa}^{+},{ }^{81} \mathrm{Br}\right)$; HRMS. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18}{ }^{79} \mathrm{BrNONa}\left(\mathrm{MNa}^{+}\right)$402.04695. Found: 402.04844. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}: \mathrm{C}, 66.33$; $\mathrm{H}, 4.77$; $\mathrm{N}, 3.68$. Found: C, 66.30; H, 4.69; N, 3.75 .
$\mathbf{2}^{\prime}$-Bromo- N-(2-methylphenyl)-[1,1'-biphenyl]-2-carboxamide (1e). 1e was prepared from 2-methylaniline ($0.268 \mathrm{~g}, 2.5 \mathrm{mmol}$) in accordance with the procedure described in the preparation of 1a. Purification of the residue by column chromatography (hexane/AcOEt $=10-4)$ gave $1 \mathbf{e}(0.732 \mathrm{~g}, 80 \%)$. 1e: white solid; $\mathrm{mp} 112-114^{\circ} \mathrm{C}$; IR (neat) $3237,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.89-7.92(1 \mathrm{H}, \mathrm{m})$,
$7.72(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.50-7.57(2 \mathrm{H}, \mathrm{m})$, $7.32-7.42(3 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{dt}, J=2.4,7.8 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.00-7.05(2 \mathrm{H}, \mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 166.6,141.0,138.3,135.9,135.5,133.0,131.3$, 131.0, 130.3, 130.2, 129.7, 129.0, 128.9, 128.4, 127.8, 126.6, 125.1, 123.1, 122.6, 17.3; MS $(m / z) 366\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 368\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}\right)$; HRMS. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}\left(\mathrm{MH}^{+}\right)$366.04935. Found: 366.04628. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}: \mathrm{C}, 65.59 ; \mathrm{H}, 4.40 ; \mathrm{N}$, 3.82. Found: C, 65.33; H, 4.37; N, 3.78.

5-(2-iso-Propylphenyl)phenanthridin-6(5H)-one (2a). Under an Ar atmosphere, to the suspension of $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015$ $\mathrm{mmol})$ and (R)-DTBM-SEGPHOS ($26.5 \mathrm{mg}, 0.0225 \mathrm{mmol}$) in toluene-1,4-dioxane ($1.35-0.15 \mathrm{~mL}$) were added $1 \mathrm{a}(118 \mathrm{mg}, 0.30$ mmol) in toluene-1,4-dioxane ($1.35 \mathrm{~mL}-0.15 \mathrm{~mL}$) and subsequently $\mathrm{K}_{3} \mathrm{PO}_{4}(127 \mathrm{mg}, 0.6 \mathrm{mmol})$. After being stirred for 10 min at rt , the reaction mixture was stirred for 17 h at $80^{\circ} \mathrm{C}$. The mixture was poured into $2 \% \mathrm{HCl}$ solution and extracted with AcOEt. The AcOEt extracts were washed with brine, dried over MgSO_{4}, and evaporated to dryness. Purification of the residue by column chromatography (hexane/AcOEt $=10)$ gave $\mathbf{2 a}(91 \mathrm{mg}, 96 \%, 77 \% \mathrm{ee})$. The enantiomers of $\mathbf{2 a}$ were separated by HPLC using a CHIRALCEL OD-3 column [25 cm \times 0.46 cm i.d.; 17% i-PrOH in hexane; flow rate, $1.5 \mathrm{~mL} / \mathrm{min} ;(+)-2 \mathrm{a}$ (major); $t_{\mathrm{R}}=4.6 \mathrm{~min},(-)-\mathbf{2 a}$ (minor); $\left.t_{\mathrm{R}}=17.1 \mathrm{~min}\right]$. 2a: white solid; $\mathrm{mp} 57-59{ }^{\circ} \mathrm{C}(77 \% \mathrm{ee}) ;[\alpha]_{\mathrm{D}}=+49.8\left(c=0.40, \mathrm{CHCl}_{3,} 80 \%\right.$ ee $)$; IR (neat) $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.56(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6$ $\mathrm{Hz}), 8.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.30(1 \mathrm{H}, \mathrm{m}), 7.81(1 \mathrm{H}, \mathrm{ddd}, J=2.0$, $7.6,8.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{ddd}, J=1.2,7.6,8.8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{dd}, J=1.6$, $8.0 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz})$, $7.24-7.31(2 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}), 6.57-6.62(1 \mathrm{H}$, m), $2.64(1 \mathrm{H}$, sept, $J=6.8 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J$ $=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 161.4,146.7,139.0,135.6,134.0$, $132.7,129.4,129.1$ 129.0, 128.8, 128.0, 127.5, 127.2, 125.8, 122.9, 122.6, 121.7, 118.8, 116.8, 28.0, 23.8, 23.4; MS $(m / z) 336\left(\mathrm{MNa}^{+}\right)$; HRMS. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NONa}\left(\mathrm{MNa}^{+}\right)$336.13643. Found: 336.13928.

5-(2-tert-Butylphenyl)phenanthridin-6(5H)-one (2b). 2b was prepared from $\mathbf{1 b}(119 \mathrm{mg}, 0.3 \mathrm{mmol})$ in accordance with the procedure described in the preparation of $2 \mathbf{a}$. Purification of the residue by column chromatography (hexane/ $\mathrm{AcOEt}=10$) gave $\mathbf{2 b}$ ($92.6 \mathrm{mg}, 97 \%, 73 \% \mathrm{ee}$). The enantiomers of $\mathbf{2 b}$ were separated by HPLC using a CHIRALCEL OD-3 column [$25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ i.d.; 9% $i-\mathrm{PrOH}$ in hexane; flow rate, $1.5 \mathrm{~mL} / \mathrm{min}$; (+)-2b (major); $t_{\mathrm{R}}=6.9$ $\min ,(-) \mathbf{- 2 b}$ (minor); $\left.t_{\mathrm{R}}=11.3 \mathrm{~min}\right] . \mathbf{2 b}$: white solid; $\mathrm{mp} 61-63{ }^{\circ} \mathrm{C}$ ($>99 \% \mathrm{ee}$); $[\alpha]_{\mathrm{D}}=+97.7\left(c=0.40, \mathrm{CHCl}_{3}, 70 \% \mathrm{ee}\right)$; IR (neat) 1655 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.57(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.6 \mathrm{~Hz}), 8.33(1 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}), 8.29(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $7.72(1 \mathrm{H}, \mathrm{dd}, J=1.4,8.0 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dt}, J$ $=1.2,8.0 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.4 \mathrm{~Hz}), 7.24-7.32(2 \mathrm{H}, \mathrm{m}), 7.02$ $(1 \mathrm{H}, \mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}), 1.16(9 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 162.4,147.5,140.0,135.7,134.0,132.8,131.3$, 130.0, 129.1, 129.0, 128.9, 128.0, 128.0, 126.0, 123.0, 122.5, 121.8, 119.0, 118.0, 36.1, 31.6; MS $(m / z) 350\left(\mathrm{MNa}^{+}\right)$; HRMS. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NONa}\left(\mathrm{MNa}^{+}\right) 350.15208$. Found: 350.15242.

5-(Naphthalen-1-yl)phenanthridin-6(5H)-one (2c). 2c was prepared from 1c $(80 \mathrm{mg}, 0.2 \mathrm{mmol})$ in accordance with the procedure described in the preparation of 2a. Purification of the residue by column chromatography (hexane/ $\mathrm{AcOEt}=5$) gave $2 \mathrm{c}(60$ $\mathrm{mg}, 94 \%, 70 \% \mathrm{ee})$. The enantiomers of 2 c were separated by HPLC using a CHIRALCEL OD-3 column $[25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ i.d.; $33 \% i$ PrOH in hexane; flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; (+)-2c (major); $t_{\mathrm{R}}=8.0 \mathrm{~min}$, $(-)-2 \mathrm{c}$ (minor); $\left.t_{\mathrm{R}}=14.9 \mathrm{~min}\right] .2 \mathrm{c}$: white solid; $\mathrm{mp} 229-231^{\circ} \mathrm{C}$ ($70 \% \mathrm{ee}$) ; $[\alpha]_{\mathrm{D}}=+131.1\left(c=0.40, \mathrm{CHCl}_{3,} 70 \% \mathrm{ee}\right)$; IR (neat) 1653 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.63(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}), 8.42(1 \mathrm{H}$, $\mathrm{d}, J=8.4 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $8.01(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}), 7.64-7.72(2 \mathrm{H}$, $\mathrm{m}), 7.50-7.55(2 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}), 7.29(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}), 6.54(1 \mathrm{H}$, $\mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 161.7,139.1,134.9,134.8,134.2$, $133.0,130.2,129.4,129.3,129.2,128.6,128.1,127.4,127.1,126.6$, 126.1, 125.8, 123.0, 122.7, 122.4, 121.8, 119.0, 117.2; MS (m/z) 344
$\left(\mathrm{MNa}^{+}\right)$; HRMS. Calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NONa}\left(\mathrm{MNa}^{+}\right)$344.10513. Found: 344.10539.

5-(2-Ethylphenyl)phenanthridin-6(5H)-one (2d). 2d was prepared from 1d ($74 \mathrm{mg}, 0.2 \mathrm{mmol}$) in accordance with the procedure described in the preparation of $\mathbf{2 a}$. Purification of the residue by column chromatography (hexane $/ \mathrm{AcOEt}=5$) gave $2 \mathrm{~d}(40 \mathrm{mg}, 68 \%$, 68% ee). The enantiomers of 2 d were separated by HPLC using a CHIRALCEL OD-3 column [$25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ i.d.; $17 \% i$-PrOH in hexane; flow rate, $1.5 \mathrm{~mL} / \mathrm{min}$; (+)-2d (major); $t_{\mathrm{R}}=8.7 \mathrm{~min},(-)-2 \mathrm{~d}$ (minor); $\left.t_{\mathrm{R}}=12.5 \mathrm{~min}\right] .2 \mathrm{~d}$: colorless liquid; $[\alpha]_{\mathrm{D}}=+55.1(c=0.38$, $\mathrm{CHCl}_{3,} 70 \%$ ee); IR (neat) $1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.57$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.34(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.29-8.32(1 \mathrm{H}, \mathrm{m}), 7.81$ $(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.2, \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.46-7.52(2 \mathrm{H}, \mathrm{m})$, $7.41(1 \mathrm{H}, \mathrm{dt}, J=2.0,7.2 \mathrm{~Hz}), 7.26-7.30(2 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{d}, J=7.2$ $\mathrm{Hz}), 6.59-6.63(1 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{qd}, J=7.6,15.2 \mathrm{~Hz}), 2.32(1 \mathrm{H}$, $\mathrm{qd}, J=7.6,15.2 \mathrm{~Hz}), 1.07(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: 161.3, 141.9, 138.9, 136.6, 134.1, 132.8, 129.5, 129.2, 129.1, 128.0, 127.7, 125.9, 123.0, 122.6, 121.8, 119.0, 116.7, 23.6, 13.6; MS (m / z) $322\left(\mathrm{MNa}^{+}\right)$; HRMS. Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NONa}\left(\mathrm{MNa}^{+}\right) 322.12078$. Found: 322.12061.

5-(2-Methylphenyl)phenanthridin-6(5H)-one (2e). 2e was prepared from $1 \mathrm{e}(72 \mathrm{mg}, 0.2 \mathrm{mmol})$ in accordance with the procedure described in the preparation of 2 a . Purification of the residue by column chromatography (hexane/AcOEt $=5$) gave $\mathbf{2 e}(42$ $\mathrm{mg}, 74 \%, 42 \%$ ee). The enantiomers of 2 e were separated by HPLC using a CHIRALCEL OD-3 column $[25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ i.d.; $9 \% ~ i$ PrOH in hexane; flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; (+)-2e (major enantiomer); $t_{\mathrm{R}}=25.7 \mathrm{~min},(-)-2 \mathrm{e}($ minor enantiomer $\left.) ; t_{\mathrm{R}}=30.4 \mathrm{~min}\right] .2 \mathrm{e}:$ white solid; $\mathrm{mp} 102-104{ }^{\circ} \mathrm{C}(42 \% \mathrm{ee}) ;[\alpha]_{\mathrm{D}}=+26.3\left(c=0.26, \mathrm{CHCl}_{3,}, 42 \%\right.$ ee); IR (neat) $1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.58(1 \mathrm{H}, \mathrm{dd}, J=1.2$, $7.6 \mathrm{~Hz}), 8.34(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.29-8.32(1 \mathrm{H}, \mathrm{m}), 7.81(1 \mathrm{H}, \mathrm{dt}, J=$ $1.2,7.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{dt}, J=1.0,7.8 \mathrm{~Hz}), 7.38-7.47(3 \mathrm{H}, \mathrm{m}), 7.26-$ $7.31(2 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dd}, J=2.4,6.4 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}$, s); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 161.0,138.4,137.1,136.5,134.1,132.8$, 131.5, 129.3, 129.0, 128.9, 128.0, 127.7, 125.9, 123.1, 122.7, 121.8, 119.0, 116.3, 17.4; MS $(m / z) 308\left(\mathrm{MNa}^{+}\right)$; HRMS. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NONa}\left(\mathrm{MNa}^{+}\right)$308.10513. Found: 308.10504.

Optical Purification through SDE by MPLC of 2a. Mediumpressure liquid chromatography (MPLC, eluent: hexane $/ \mathrm{AcOEt}=30$) of 2a ($82 \% \mathrm{ee}, 42 \mathrm{mg}$) was performed on a $25 \times 4 \mathrm{~cm}$ i.d. prepacked column (silica gel, $10 \mu \mathrm{~m}$) with a UV detector. The eluted substrate 2a was collected in two fractions across the boundary point, and $>99 \%$ ee $(21 \mathrm{mg})$ and 56% ee $(14 \mathrm{mg})$ of 2a were obtained from less polar and more polar fractions, respectively.

Optical Purification through SDE by MPLC of $\mathbf{2 b}$. Mediumpressure liquid chromatography (MPLC, eluent: hexane $/ \mathrm{AcOEt}=30$) of $\mathbf{2 b}(73 \%$ ee, 90 mg$)$ was performed on a $25 \times 4 \mathrm{~cm}$ i.d. prepacked column (silica gel, $10 \mu \mathrm{~m}$) with a UV detector. The eluted substrate $\mathbf{2 b}$ was collected in two fractions across the boundary point, and $>99 \%$ ee $(27 \mathrm{mg})$ and 62% ee $(59 \mathrm{mg})$ of $\mathbf{2 b}$ were obtained from less polar and more polar fractions, respectively.

2-Bromo-5-(2-(tert-butyl)phenyl)phenanthridin-6(5H)-one (3b). To the solution of $\mathbf{2 b}(>99 \%$ ee, $44 \mathrm{mg}, 0.134 \mathrm{mmol})$ in DMF $(2.0 \mathrm{~mL})$ was added N -bromosuccinimide ($48 \mathrm{mg}, 0.272 \mathrm{mmol}$). After being stirred for 24 h at $50^{\circ} \mathrm{C}$, the mixture was poured into $2 \% \mathrm{HCl}$ solution and extracted with AcOEt. The AcOEt extracts were washed with brine, dried over MgSO_{4}, and evaporated to dryness. Purification of the residue by column chromatography (hexane $/ \mathrm{AcOEt}=15$) gave 3b ($50.4 \mathrm{mg}, 89 \%$). 3b: white solid; mp $159-161{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+108.7$ $\left(c=0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $1659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.56$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.38(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.81(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{dd}, J=1.4,8.2 \mathrm{~Hz}), 7.63(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}), 7.34-7.39(2 \mathrm{H}, \mathrm{m}), 6.99$ $(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 1.16(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 162.1,147.6,139.0,135.3,133.0,132.7,131.7$, 131.2, 130.1, 129.2, 129.2, 128.8, 128.1, 126.1, 125.7, 121.9, 120.7, 119.6, 115.7, 36.1, 31.6; MS $(m / z) 428\left(\mathrm{MNa}^{+},{ }^{79} \mathrm{Br}\right), 430\left(\mathrm{MNa}^{+}\right.$, $\left.{ }^{81} \mathrm{Br}\right)$; HRMS. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20}{ }^{79} \mathrm{BrNONa}\left(\mathrm{MNa}^{+}\right)$428.06260. Found: 428.05948.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b02387.

Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1 a} \mathbf{- e}, \mathbf{2 a}-\mathbf{e}, \mathbf{3 b}$, and chiral HPLC data of $\mathbf{2 a} \mathbf{a} \mathbf{e}$ (PDF) Crystallographic data for compound $\mathbf{3 b}$ (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: kitagawa@shibaura-it.ac.jp.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Typical examples for catalytic enantioselective synthesis of $\mathrm{N}-\mathrm{C}$ axially chiral compounds: (a) Kitagawa, O.; Yoshikawa, M.; Tanabe, H.; Morita, T.; Takahashi, M.; Dobashi, Y.; Taguchi, T. J. Am. Chem. Soc. 2006, 128, 12923. (b) Brandes, S.; Bella, M.; Kjaersgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 1147. (c) Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586. (d) Shirakawa, S.; Liu, K.; Maruoka, K. J. Am. Chem. Soc. 2012, 134, 916. (e) Kamikawa, K.; Arae, S.; Wu, W.-Y.; Nakamura, C.; Takahashi, T.; Ogasawara, M. Chem. - Eur. J. 2015, 21, 4954. For reviews: (f) Takahashi, I.; Suzuki, Y.; Kitagawa, O. Org. Prep. Proced. Int. 2014, 46, 1. (g) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239 and references cited therein.
(2) Typical examples for applications of N-C axially chiral compounds: (a) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. J. Am. Chem. Soc. 1994, 116, 3131. (b) Hughes, A. D.; Price, D. A.; Simpkins, N. S. J. Chem. Soc., Perkin Trans. 1 1999, 1295. (c) Paul, B.; Butterfoss, G. L.; Boswell, M. G.; Renfrew, P. D.; Yeung, F. G.; Shah, N. H.; Wolf, C.; Bonneau, R.; Kirshenbaum, K. J. J. Am. Chem. Soc. 2011, 133, 10910. (d) Dial, B. E.; Pellechia, P. J.; Smith, M. D.; Shimizu, K. D. J. Am. Chem. Soc. 2012, 134, 3675. (e) Mino, T.; Asakawa, M.; Shima, Y.; Yamada, H.; Yagishita, F.; Sakamoto, M. Tetrahedron 2015, 71, 5985. (f) Suzuki, Y.; Kageyama, M.; Morisawa, R.; Dobashi, Y.; Hasegawa, H.; Yokojima, S.; Kitagawa, O. Chem. Commun. 2015, 51, 11229. See also ref 1 g .
(3) Papers on catalytic enantioselective synthesis of N-C axially chiral anilide derivatives bearing an ortho-monosubstituent except for tertbutyl group: (a) Tanaka, K.; Takahashi, Y.; Suda, T.; Hirano, M. Synlett 2008, 2008, 1724. (b) Onodera, G.; Suto, M.; Takeuchi, R. J. Org. Chem. 2012, 77, 908.
(4) Unpublished results.
(5) Mintas, M.; Mihalijević, V.; Koller, H.; Schuster, D.; Mannschreck, A. J. Chem. Soc., Perkin Trans. 2 1990, 619.
(6) We found that the rotational barrier of N -(2-tert-butylphenyl) quinoline-2-one (α, β-unsaturated lactam) is much higher than that of N -(2-tert-butylphenyl)-3,4-dihydroquinolin-2-one IIa (saturated lactam), and the high rotational barrier of the unsaturated lactam is brought about by the destabilization of the transition state due to the conformational rigidity. Suzumura, N.; Kageyama, M.; Kamimura, D.; Inagaki, T.; Dobashi, Y.; Hasegawa, H.; Fukaya, H.; Kitagawa, O. Tetrahedron Lett. 2012, 53, 4332.
(7) The synthesis of achiral phenathridin-6-one derivatives through Cu -catalyzed intramolecular aromatic amination with similar biphenyl amide substrates has been reported. Boonya-udtayan, S.; Yotapan, N.; Woo, C.; Bruns, C.; Ruchirawat, S.; Thasana, N. Chem. - Asian J. 2010, 5, 2113.
(8) (a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1348. (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609. (c) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043. (d) Shen, Q.; Shekhar, S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371. For reviews: (e) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (f) Prim, D.; Campagne, J.-
M.; Joseph, D.; Andrioletti, B. Tetrahedron 2002, 58, 2041. (g) Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p 1051. (h) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed CrossCoupling Reactions, 2nd ed.; De Meijere, A., Diederich, F., Eds.; WileyVCH: Weinheim, Germany, 2004; p 699.
(9) Wang, Y.; Gulevich, A. V.; Gevorgyan, V. Chem.-Eur. J. 2013, 19, 15836.
(10) (a) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. Adv. Synth. Catal. 2001, 343, 264. (b) Sumi, K.; Kumobayashi, H. Top. Organomet. Chem. 2004, 6, 63.
(11) With the reaction of $\mathbf{I a}$ and $\mathbf{I b}$ in Scheme 1, the use of (R)-DTBM-SEGPHOS was not effective. In these cases, the racemic products Ia were obtained in poor yields.
(12) For reviews on SDE via achiral chromatography: (a) Soloshonok, V. A.; Berbasov, D. O. Chim. Oggi 2006, 24, 44. (b) Soloshonok, V. A.; Roussel, C.; Kitagawa, O.; Sorochinsky, A. E. Chem. Soc. Rev. 2012, 41, 4180 . (c) Sorochinsky, A. E.; Aceña, J. L.; Soloshonok, V. A. Synthesis 2013, 45, 141.
(13) Although MPLC of N-naphthyl-1-yl derivative 2c (70% ee) was also investigated, the effective SDE was not observed.
(14) Interestingly, the major enantiomer in the present reaction with (R)-DTBM-SEGPHOS had the opposite absolute configuration to that in Scheme 1 with (R)-SEGPHOS.
(15) The crystal structure of $\mathbf{3 b}$ was deposited at the Cambridge Crystallographic Data Center (the deposition number: CCDC1429036). See also the Supporting Information.

[^0]: Received: October 14, 2015
 Published: December 8, 2015

